Parametrizing complex Hadamard matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametrizing complex Hadamard matrices

Abstract. The purpose of this paper is to introduce new parametric families of complex Hadamard matrices in two different ways. First, we prove that every real Hadamard matrix of order N ≥ 4 admits an affine orbit. This settles a recent open problem of Tadej and Życzkowski [11], who asked whether a real Hadamard matrix can be isolated among complex ones. In particular, we apply our construction...

متن کامل

Trades in complex Hadamard matrices

A trade in a complex Hadamard matrix is a set of entries which can be changed to obtain a different complex Hadamard matrix. We show that in a real Hadamard matrix of order n all trades contain at least n entries. We call a trade rectangular if it consists of a submatrix that can be multiplied by some scalar c 6= 1 to obtain another complex Hadamard matrix. We give a characterisation of rectang...

متن کامل

Families of Complex Hadamard Matrices

What is the dimension of a smooth family of complex Hadamard matrices including the Fourier matrix? We address this problem with a power series expansion. Studying all dimensions up to 100 we find that the first order result is misleading unless the dimension is 6, or a power of a prime. In general the answer depends critically on the prime number decomposition of the dimension. Our results sug...

متن کامل

The 2-transitive complex Hadamard matrices

We determine all possibilities for a complex Hadamard matrix H admitting an automorphism group which permutes 2-transitively the rows of H. Our proof of this result relies on the classification theorem for finite 2-transitive permutation groups, and thereby also on the classification of finite simple groups.

متن کامل

Complex Hadamard Matrices and Combinatorial Structures

Forty years ago, Goethals and Seidel showed that if the adjacency algebra of a strongly regular graph X contains a Hadamard matrix then X is of Latin square type or of negative Latin square type [8]. We extend their result to complex Hadamard matrices and find only three additional families of parameters for which the strongly regular graphs have complex Hadamard matrices in their adjacency alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2008

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2007.06.009